ASHRAE Ottawa Valley Chapter

Chapter Meeting #2 – 21 Oct 2014

Meeting Date:	21 Oct 2014		
Location:	Restaurant International – Algonquin College		
Attendance:	Total: 51		
	Members: 44	Guests:6	Students: 1
Theme:	Membership		
Tour:	None		
Tech Session:	1hr Tech Session on refrigeration and compressor technologies		
Table Top:	Hydro Ottawa		
	Data Aire sponsor	ed by Master	
	PoolPak sponsore	d by Total HVAC	
Program:	Natatorium Desi	gn	
Speakers:	Mark Palitza, Seresco Technologies		
Prepared by:	Adam Graham		

Tech Session (16:15 - 17:15)

Social (17:30 – 18:15)

Business Session (18:15 - 18:30)

- President Steve Moons introduced the Board of Governors and Executive.
- Adam Graham introduced the guests for the evening.
- Adam Moons welcomed new members.
- Adrienne Mitani introduced this month's student theme and discussed future career panel that she is organizing as well as updating membership on new Algonquin student design team.
- Steve Moons gave recap of stroke play golf tournament. Peter Nabi won with a score of 76.
- Steve Moons reviewed today's tech session topic.
- Hydro Ottawa Table Top display was introduced by Kevin Quinlan.
 - \$710M in incentives were issued in Ottawa area in the past 4 years.
 - Incentive program has just been extended for next 6 years.
- Master Table Top display of Data Aire was introduced by Chris Fudge.
- Total HVAC Table Top display of PoolPak was introduced by Andrew Douma.
- Senators tickets were donated by Engineered Air and raffled off raising \$410 for ASHRAE Research.

Dinner (18:30 – 19:40)

Evening Program (19:40 – 20:50)

- The evening program presentation commenced with Mark Palitza of Seresco introducing himself and his presentation on Natatorium Design.
- The presentation was started by showing several photos of natatorium design gone wrong.
- Multiple possible issues we introduced:
 - o No vapour barrier
 - Suspended ceiling in pools
 - Stainless steel materials in pools (don't use in load bearing applications)

- Efflorescence (moisture forced through structure and evaporates, leaving minerals behind)
- Introduced Sterling chart showing how relative humidity can impact occupant health.
 - Optimal RH is between 40% and 60%
- Design Issues
 - Discussed dew point concept
 - Dew point is the temperature at which moisture will condense out of the air
 - Any surface with a temperature below the dp will allow condensation
 - 82F/50%RH \rightarrow 62F dew point
 - Evaporation occurs from a differential in vapour pressure at the water surface to the the vapour pressure of the air at its dew point.
 - Evaporation rate calculation: ER = 0.1 x A x AF (Pw Pdp)

ER = evaporation Rate of water, lb/h

- A = area of pool water surface, ft2
- AF = Activity Factor
- Pw = saturation vapor pressure at water surface, in. Hg
- Pdp = partial vapor pressure at room dew point, in. Hg
- 2 scenarios must be checked for greatest load
 - Occupied, AF=1 and RH of 60%
 - Unnocupied, AF=0.5 and RH of 50%
- Allowing reasonable RH increase under high activity allows for reduction in equipment size and energy savings
- o Introduced typical design conditions and activity factors for various applications
 - Emphasized the importance of proper owner expectations of pool use in sizing dehumidification equipment and air distribution
- Olympic pool example given
 - Emphasized that an increase in air temperature will reduce heat loss due to evaporation.
- Energy consideration
 - Rule of thumb for air temperature is 2F warmer than pool water temperature
- Condensation control
 - Dew-point is critical
 - 3-5cfm/ft2 glass, 5cfm/ft2 skylights
 - Diffuser type and locations are critical
- Moisture migration control
 - Maintain negative pressure inside pool relative to outdoors and adjacent spaces.
 - Vapour barrier is essential and location should be on high moisture side.
- Pool water quality
 - Largest IAQ concern (due to chloramines)
 - Improved with proper water chemistry, UV, increased OA and EA rates
- Addressing the IAQ concern
 - OA = 0.48 cfm/ft2 + 7.5 cfm/spectator (approx. double OA for water parks)
 - $\circ~$ EA $~\sim~$ 1.1 x OA (approx., to maintain 0.05-0.15" wg negative as per ASHRAE Applications Chapter 4)
 - Trichloramines are 4x heavier than air \rightarrow consider source capture?
- Art of air distribution
 - ASHRAE dictates recommended air changes per hour (ACH)
 - 4-6 ACH for natatorium
 - 6-8 ACH for spectator area
 - 8 ACH for water parks
 - Specify cfm needed to satisfy ACH required and to get OA required into breathing zone
 - Supply air to where condensation is predictable such as exterior windows, doors, etc.
 - Return air to compliment and avoid short circuiting (can cut off as much as 50-75% of

effective supply air)

- $\circ~$ Perimeter air supply can cause a desireable secondary airflow at 10-30 fpm over the water surface
- Art of duct design
 - Duct materials are critical
 - Galvanized grade G90 or higher is ok
 - Aluminum is good but expensive (anodized prefered)
 - Fabric is great but proper air distribution is critical
 - Avoid stainless steel due to high corrosion concerns and high cost
 - Photo shown of corrosion of high grade 316L SS after only 8 months
- Heating and cooling
 - Space temperature is 10-15F higher than typical applications (more heating, less sensible cooling)
 - Including OA is critical as this will acount for approx. 50% of heating load
- Energy/heat recovery
 - Approx. 100F ΔT between OA and EA in winter (high energy savings potential)
 - Recommended for units 2000-5000cfm or higher
 - Pool water heating is a no brainer (free pool heat at the cost of proper dehumidification)
- Mr. Palitza opened the floor to questions from the audience.
- After a brief question and answer period President Steve Moons thanks Mr. Palitza and the meeting was adjourned at 20:50.